
CAPSTONE PROJECT FINAL PAPER

CROIX GYUREK (ADVISED BY DR. MOHAMMAD AL HASAN)

Abstract. I prove two computational hardness results for problems in the domain of multiwinner ap
proval voting. First, I define the notion of core stability, a property of voting methods borrowed from
game theory, and show that verifying core stability is coNPcomplete. Then I present a failed attempt
to prove that finding a corestable winner set is NPhard, and discuss my experience with that prob
lem. Finally, I prove that for the voting method known as Sequential Proportional Approval Voting,
which is computable in polynomial time if a tiebreak scheme is given, it is NPhard to determine if
there exists some tiebreak order can elect a committee with a given total score, thus rendering the
method vulnerable to delays if multiple rounds are close to being tied.

1. Introduction

For about seven or eight years I have been fascinated with voting and elections, particularly the
very mathematical area of alternate voting methods like approval voting, instantrunoff voting, and
the entire family of Condorcet methods. As I have been thinking about the broken nature of U.S.
politics, the concept of proportional representation as a way to fix gerrymandering stands out as a
good reform, although I still believe in allowing voters to vote for candidates, rather than parties, to
allow greater accountability. Among the possible ways to do this, approval ballots (where voters
can either “approve” or “disapprove” each candidate independently) seem like the simplest possible
ballot design.

My work has been influenced largely by the soontobeprinted book by Lackner and Skowron,
[3]. They define the multiwinner approval voting environment in the following way:

Definition 1.1. A kwinner approval voting election, hereafter simply “approval election”, is a
quadruple E = (V,C,A, k) where V is a set of voters, C a set of candidates, A a function A :
V → P(C), and k is a positive integer less than or equal to |C|. For any voter v ∈ V, we call A(v)
the ballot for v. A subset W ⊆ C with |W| = k is a winner set for E.

It remains to specify exactly how the winners are determined. The most obvious way to deter
mine the winners is to elect the candidates with the most approvals:

Definition 1.2. Naïve Approval Voting gives each candidate a score based on the number of voters
who approve that candidate: S(c) = |{v ∈ V : c ∈ A(v)}|. The winners are the k candidates with
the highest values of S(c).

In certain situations this rule is sufficient, but in political environments aiming for representation
of diverse groups, this is strongly biased towards the largest faction. For example, if k = 5 and the
Purple andOrange parties each run 5 candidates, 60% of voters approve all Purple candidates, and
40% approve all Orange candidates, then all five winners will be Purple. This lack of representation
is the motivation behind voting methods that aim to elect a “proportional” winner set. In a purely
partisan election, such as the example above, a selection of 3 Purple and 2 Orange winners is
clearly “proportional”. However, in a general approval election, where voters may vote as they
please, this is harder to define.

A more “proportional” voting method using approval ballots can be created by, intuitively speak
ing, giving more weight to voters who approved fewer winners, since they are less represented.
This can be formalized as follows:

1

CAPSTONE PROJECT FINAL PAPER 2

Definition 1.3. Given an approval election (V,C,A, k), for a given winner set W, the proportional
satisfaction of a voter v approving exactly m winners is pW(v) =

∑m
i=1

1
i .

Proportional Approval Voting (PAV) elects the winner set W that maximizes the total proportional
satisfaction of the electorate, that is, W = argmaxS

∑
v∈V pS(v), where S ranges over ksized

subsets of C.

This method has been shown to be NPhard to compute the winner set, see [1]. However, it
does satisfy several formalizations of “proportionality”, such as Extended Justified Representation
(see [3], p. 60). A similar, and computationally faster, rule can be implemented by using a greedy
algorithm to pick winners one at a time:

Definition 1.4. Sequential Proportional Approval Voting (SeqPAV) begins with W0 = ∅. For each
i = 1, . . . , k, the next winner wi is the unelected candidate who, along with {wj : 1 ≤ j < i},
provides the greatest proportional satisfaction:

wi = argmax
c∈C\Wi−1

∑
v∈V

pWi−1∪{c}(v)

The final winner set is W = {wi}ki=1.

This method can be restated in the following terms: All voters start with a “weight” of 1. The first
winner, w1, is the candidate approved by the most voters. For the second roung, all voters who
approved w1 have their weight set to 1

2 , and the candidate with the most weighted approvals is w2.
This process continues, where a voter who approved r winners has a weight of 1

1+r (and weights
are recalculated after each new candidate is elected), until all k winners have been selected. I will
return to SeqPAV later.

2. Core Stability

One way to formulate the concept of proportionality is to require that any fraction α of the elec
torate be able to “control” at least ⌊αk⌋ winning candidates. The notion of “the core”, or “core
stability”, defined in [3] defines “control” assuming that a voter prefers a set of candidates T1 over
T2 if that voter approves (strictly) more candidates in T1 than T2. Core stability, then, requires that
no group of voters that is α of the population can find a set T of ⌊αk⌋ candidates they unanimously
prefer over the actual winners W. More precisely:

Definition 2.1 ([3]). Given an election E = (V,C,A, k), we say that a winner set W ⊆ C, where
|W| = k, is corestable, or in the core, if there does not exist T ⊆ C and V∗ ⊆ V such that:

(1) |V∗|
|V| ≥ |T|

k , and
(2) for every voter v ∈ V∗, |A(v) ∩ T| > |A(v) ∩W| (that is, all voters in V∗ prefer T to W).

If such a T and V∗ exist, then T and V∗ witness that W is not corestable.

Note that the sets W and T are not required to be disjoint. This will be important in the proof of
Theorem 3.3, where the sets W and T constructed will have a quite large intersection. According
to [3], it is not known whether a corestable W exists for every election E or not.

3. Core Stability is coNPComplete

Definition 3.1. The VerifyCoreStable problem: Given an Approval Election (V,C,A, k) and a
winner set W ⊆ C with |W| = k, is W corestable?

To prove this is coNPcomplete, we will reduce the NPcomplete ([2]) Dominating Set problem
to it, which asks for subsets of vertices of a graph that are adjacent to every vertex.

CAPSTONE PROJECT FINAL PAPER 3

Definition 3.2. The DominatingSet problem: Given a graph G = (VG,EG) and a positive integer
t, does there exist a subset of vertices Y ⊆ VG such that |Y| = t and for every vertex x ∈ VG \ Y
there is a vertex y ∈ Y with {x, y} ∈ EG?

Theorem 3.3. VerifyCoreStable is coNPcomplete.

Proof. First, it is clear that VerifyCoreStable is in coNP, because if (V∗,T) witnesses thatW is not
corestable, then this can be checked in polynomial time, by simply iterating over all voters v ∈ V∗

and checking whether or not |A(v) ∩ T| > |A(v) ∩W|.
Now, to show that VerifyCoreStable is coNPhard, we use a reduction from the Dominating

Set Problem. Given an instance (VG,EG, t) of DominatingSet, let n be the number of vertices in
VG, and create an election instance as follows:

• The voters are {vx : x ∈ X}, one voter for each vertex.
• The candidates come in three types. There are n2 universally approved candidates U =

{uj}n
2

j=1, plus one candidate for each vertex, {cx : x ∈ X}, plus t dummy candidates {dj}tj=1
approved by no voters.

• The ballot for voter vx approves all of the universally approved candidates, as well as the
vertex candidates adjacent to or equal to x: A(vx) = {cy : y ∈ VG, x = y or {x, y} ∈ EG}∪U.

• Finally, we set the winner set W = {cj}n
2

j=1 ∪ {dj}tj=1.

Here, |V| = n and k = n2 + t. Currently, each voter approves exactly n2 winners. For W to
not be corestable, it is necessary to find T ⊆ C and V∗ ⊆ V such that |V∗|k ≥ |T||V|, that is,
|V∗|(n2+ t) ≥ |T|n. Since |A(vx)∩T| ≤ |T|, we need that |T| ≥ n2+1. Hence, |V∗| ≥ n3+n

n2+t =
n+1/n
1+t/n2 .

The reader can verify, since t < n, that this fraction is greater than n − 1 and so |V∗| must equal
|V| = n.

At this point, we require that every voter approves at least n2+1 candidates in T. We can get n2

of these by using U = {uj}n
2

j=1. After this, we can select at most t additional candidates. The only
way to ensure each voter approves at least one extra candidate from T is to select candidates from
c. The condition that each voter vx approves some cy ∈ T is equivalent to the condition that the set
Y = {y : cy ∈ T} is a dominating set for X, since vx approves cy iff x = y or x ∼ y in the graph. Also,
since we must have |T| ≤ k, it follows that |Y| ≤ k− |U| = (n2 + t)− n2 = t. Hence, if T witnesses
that W is not corestable, then U ⊆ T and Y = {y : cy ∈ T} is a dominating set for X of size at
most t. The converse is also true: if Y is a tsized dominating set for X, then T = U ∪ {cy : y ∈ Y}
witnesses that W is not corestable. This finishes the proof. □

4. Finding CoreStable Winner Sets

Conjecture 4.1. Given an election (V,C,A, k) and a subset C∗ ⊆ C, it is NPhard to determine if
there exists a corestable W ⊆ C∗.

I was unable to prove this. The closest that I got was attempting the following weaker result:
Definition 4.2. Given an election E = (V,C,A, k) and an integer q ≤ k, a winner set W ⊆ C is q
corestable if there does not exist T ⊆ C such that |T| = q and T witnesses that W is coreunstable.

Conjecture 4.3. For any fixed integer q ≥ 3, the following problem is NPhard: Given an election
E, a subset of candidates C∗ ⊆ C, determine if there exists a qcorestable W ⊆ C∗.

Idea (not a proof). Wewould reduce this to the qexact cover problem: given the setX = {1,2, . . . , qn}
and qn sets Sj = {xj,1, . . . , xj,q} ⊆ X,1 ≤ j ≤ qn, determine if there exists a subcollection of n sets,
{Sji : 1 ≤ i ≤ q}, whose union is X. (Since all sets have cardinality q, this would have to be a
disjoint union if it equals X.)

The election would be created as follows, where the question marks represent numbers that
may need to be changed to make the argument work:

CAPSTONE PROJECT FINAL PAPER 4

• The voters are copies of the numbers, {v1,i, . . . , vnq,i : 1 ≤ i ≤?}.
• The q(n+2) candidates are the sets, {Sj}qnj=1, as well as some number of extra candidates
{dj}?j=1.

• The ballots are A(vx,i) = {Sj : x ∈ Sj} ∪ {dj}qj=1. In other words, each voter approves the
sets it is contained in, and the first q of the d candidates.

• We let C∗ be the collection {Sj}nqj=1 ∪ {dj}q−1
j=1 .

Finally, we set the number of winners k to... something sufficiently large. The idea is that if A
is a collection of n sets that covers X exactly, then all voters will approve the correct number of
candidates. However, I seem to have failed because it is possible to miss only one number, rather
than needing to miss q numbers.

I tried a similar argument with the voters being sets, but this was near impossible to convert into
the actual problem which requires a search for candidate sets. Hence, this conjecture remains
unresolved. □

This does not truly prove that FindCoreStable is NPhard, however. For one, although “does
there exist a corestableW ⊆ C∗” is the conjunction of “does there exist a qcorestableW ⊆ C∗” for
all 1 ≤ q ≤ k, there is no reason that the conjunction of NPhard problems must be NPhard. I have
not fully investigated the process of converting find problems into decision problems, other than that
each should be reducible to the other. If there were a polynomialtime algorithm for the problem in
Conjecture 4.1, then it could be used to solve FindCoreStable by repeatedly querying increasing
subsets of C until the answer becomes yes, permanently placing the last candidate added in C∗,
and then starting over. This uses fewer than k|C| runs of the assumed polynomialtime algorithm,
so FindCoreStable would be in P. The contrapositive is this:

Proposition 4.4. If FindCoreStable is NPhard, then Conjecture 4.1 is true.

Unfortunately, this is not the direction of implication I want. I was inspired by the link between
the Subset Sum decision and finding problems.1 Given a decision Subset Sum oracle, if it answers
yes for a given set of numbers, we can find a subset in linear time by recursively calling the oracle
on S \ {maxS}; if the answer is no, that maximum was essential, and if

The difficulty I ran into with Conjecture 4.1 is that solving the findproblem does not immediately
solve the C∗ problem, since the found committee may be outside of C∗. In fact, there seem to
be very few NPhard find problems that are guaranteed to have a solution. (It may well be that
corestable winner sets always exist.) The closest I can think of is the discrete logarithm problem
(given positive integers (g,n,b) with n prime and g a primitive root of n, find a such that ga ≡ b
mod n); it is quickly verifiable that n is prime and g is a primitive root, so such an a must exist, but
determining the a is at least hard enough to base our entire digital livelihoods on (although it has
not been proven NPcomplete since it is in BQP).

5. Sequential Proportional Approval Voting

Story: After a while of realizing what I had gotten myself into, trying to reason about something
that was intuitively “doubly hard” (it involved an exponential number of exponential checks), I de
cided to find a lower hanging fruit based on a specific voting method, so that my results can be
more concrete. For this, I turned back to [3]’s list of open problems, one of which involved Thiele
methods.
Math: As we saw earlier, the Proportional Approval Votingmethod has nice theoretical properties

but is NPcomplete to determine the winner of. A compromise method called Sequential PAV
(SeqPAV) exists that is clearly computable in polynomial time, assuming that elections are not tied.

1Decision problem: Given a set S of integers and an integerm, determine whether or not there exists a subset T ⊆ S
whose sum is exactly m. The finding problem asks to explicitly find T.

CAPSTONE PROJECT FINAL PAPER 5

In real elections, exact ties (in, for instance, U.S. federal and statewide elections) are incredibly
rare because the number of voters is very large [citation needed]. However, if the election were
tied (or close to tied) in an early round, the multiround nature of SeqPAV would delay the count
until the correct round winner could be determined.2

It would be convenient if there were an algorithm to determine all possible results coming out
of ties, or more precisely, nearties where candidates’ scores differ by a small enough margin to
require a recount. (The “tiebreak order” represents the relatively small quantity of extra votes that
ultimately decides the election.) This way, as soon as the exact vote counts are confirmed, the win
ning committee can be determined immediately, without having to manually recount the remaining
rounds. Unfortunately, this can theoretically result in an exponential number of tiebreak possibil
ities, requiring an exponential number of recounts if done upfront. For a very simple example,
consider the following SeqPAV election:

Example 5.1. Let there be 9 voters V = {v1, v2, . . . , v9}, 4 candidates C = {a,b, c,d}, and 2
winners to be elected. Define the ballots as follows:

A(v1) = {a,b} A(v3) = {a,b, c} A(v5) = {a,b} A(v7) = {c,d} A(v9) = {d}
A(v2) = {a,b} A(v4) = {a, c,d} A(v6) = {b, c} A(v8) = {d}

Under SeqPAV, in the first round, the scores for (a,b, c,d) respectively are (5,5,4,4). We have
a tie between a and b. If the tie is broken in favor of a, then voters v1 through v5 have their weights
reduced to 1

2 , and the score gains in the second round become (0, 42 +1, 12 +3, 22 +2) = (0,3, 72 ,3),
so c wins the second seat (a’s gain is zero since a was already elected). However, if the tie is broken
in favor of b, then it is v1, v2, v3, v5, v6 who lose influence, so the score gains are (42 +1,0, 12 +3,4),
resulting in a tie between c and d.

In this example, the tiebreak only affected one candidate, but if there weremore than two winners
there could potentially be a tie or neartie in each round, resulting in many different final outcomes.
This “chaos” effect can be made precise with the following hardness result.

Theorem 5.2. The following problem is NPcomplete: Given an approval election E and score
s ∈ Q, determine whether or not there exists a winner set W with PAV score at least s, such that
W can be obtained from applying the SeqPAV algorithm to E for some tiebreaking order τ.

Proof. This problem is certainly in NP, since one must merely specify the order τ; the SeqPAV
algorithm with tiebreak order τ can be computed in polynomial time and the final score checked.

To show hardness, we reduce from the NPcomplete ([2]) Independent Set problem. Given a
graph G = (VG,EG) and integer t, we construct an approval election with k = t winners as follows:

• Let d be the maximum degree of vertices in G.
• The candidates are the vertices of G: C := VG.
• The voters come in two forms: the edges EG, and additional voters for each vertex to being
the total number of voters on each vertex to d: {vx,j : x ∈ VG,1 ≤ j ≤ d− deg(x)}.

• The ballots are as follows: Edge voters approve the two candidates they connect, A({x, y}) =
{x, y}. Vertex voters vx,j approve only {x}. Hence, all candidates are approved by exactly
d voters.

• Finally, the target score is s = dk.
The only way a winner set W can reach the score dk is if the candidates in W each receive

support from a different set of d voters. This will happen if and only if no edge voter approves two
distinct candidates of W, i.e. W is an independent set in G. Furthermore, if Wj is a partial winner

2A similar effect happened in the 2022 U.S. House of Representatives election, which used instantrunoff voting,
another multiround system. The firstround vote counts of Begich and Palin were close, and the choice of which one
to eliminate first could have determined whether or not the other could beat Rep. Peltola.

REFERENCES 6

set of size j < k, then for any candidate x, the increase in PAV score from electing x will be d if and
only if no voter approving x also approves a candidate in Wj. Since the only voters who approve
x are the vertex and edge voters, this is equivalent to x not being part of any edge including Wj,
i.e. x is not adjacent to any vertex (candidate) in Wj. Hence, under any tiebreaking rule in which x
takes priority over all candidates not in or adjacent to Wj,

Thus,W is an independent set if and only ifW can be elected under SeqPAV with some tiebreak
ing rule. □

6. Conclusions

The result on coNPhardness was already known, but I was unable to access the proof due
to a citation error and decided to independently prove it myself. The SeqPAV result is more in
teresting; has practical importance because it appears to destroy the purpose of SeqPAV as an
“efficient” approximation to PAV. Although with perfect, instant tabulation and a fixed tiebreak order
(or a random oracle, if tiebreaks are random) SeqPAV is in P, the messy, noisy, heuristic nature
of realworld elections (at least in the US) always threatens to introduce multiple layers of delays.
Personally, I almost wonder if it would be better to use PAV with a manageable number of winners
(like 3 or 5) with algorithms3 to prune the O(|C|k) search space, which can be engineered ahead
of time, than implement SeqPAV and watch it delay an entire area’s representation from being
seated.

Of course, PAV can theoretically result in ties as well. However, assuming the entire data is col
lected at once, this still only requires one round of recounting. Another question concerns randomly
selecting a fair winner, since determining the probability distribution is almost certainly NPhard.
This could be circumvented by creating a primary tiebreak, invariant under candidate permutations,
with the property that any ties that persist must be of the form {W ⊆ T : |W| = k} for some subset
T of the candidates.

References

[1] Haris Aziz et al.Computational Aspects of MultiWinner Approval Voting. 2014. doi: 10.48550/
ARXIV.1407.3247. url: https://arxiv.org/abs/1407.3247.

[2] Michael R Garey and David S Johnson. “Computers and intractability”. In: A Guide to the
(1979).

[3] Martin Lackner and Piotr Skowron. MultiWinner Voting with Approval Preferences. Springer
International Publishing, 2023. doi: 10.1007/978-3-031-09016-5. url: https://doi.org/
10.1007/978-3-031-09016-5.

3For instance, if ak is the number of approvals that the kth most approved candidate gets, it is easy to show that
no candidate with fewer than ak

k approvals can possibly be elected. Hence, a large number of writein or poorly known
candidates could be eliminated immediately. With an algorithm like branchandbound this principle can be applied
recursively to subcases.

