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This is a rough draft. I intend to improve the writeup significantly before
attempting to publish.

1 Introduction

In the spring of 2021, I noticed a problem, which appeared on the website Puzzling Stack
Exchange six years prior, [2], by a user named “Cirdec” about prisoners attempting to
survive a warped “trial”: A group of p political prisoners have been arrested by a corrupt
government. To give the appearance of fairness, the court requires the prisoners to enter
a “statement”, which must be a single word from the court’s official dictionary; each
statement will then be revealed to the other prisoner, and then the prisoners must each
give “testimony”, which is also a single word, and the testimonies must match (or else
they are convicted of perjury!). If the testimonies do match, the court, having no genuine
evidence, will be forced to release the defendants.

The complication is that, before the “trial”, the court gives each prisoner a list of b = 10
banned words, which that prisoner is not allowed to use as testimony. The lists may be
different for each prisoner.1 The prisoners are allowed to strategize before receiving the
banned word list (and are given copies of the official dictionary), but the court will listen
in and will try to prevent the prisoners from escaping. The question is whether or not
the prisoners, given the dictionary D (specified in the problem as having at least 170000
words), can form a strategy that guarantees their escape regardless of the court’s actions.

The accepted answer on Puzzling Stack Exchange [2] solves this by partitioning the
dictionary: one prisoner finds a letter α such that they can legally say any word beginning
with α; the other finds a number n such that they can say the n-th word beginning with
any letter (their statement could be the n-th word starting with “a”). However, since the
dictionary is given ahead of time, the actual words do not really matter; the prisoners can
simply pretend the dictionary is D = {0, 1, . . . , 112−1} and use the base-11 representation

1There is nothing wrong with prisoner i using a word from prisoner j’s banned list as the statement,
but since the testimonies must be identical, the final testimony must be on no one’s banned list, or else
someone will be held in contempt of court.
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of w ∈ D; these numbers can be mapped to the first 121 words of the dictionary to give
the actual statements and testimony. Hence, we can think of the dictionary D has a set of
natural numbers, or indeed any abstract set of a given size.

This problem can be easily generalized to any number of prisoners p and any number
of banned words b; I assume that when p > 2, all prisoners will be given all statements.
Since the prisoners only have one chance to communicate (their statements), they need
to communicate a subset of their non-banned words such that, when all statements are
revealed, these “safe sets” have at least one intersection (if there are multiple mutually
safe words, the prisoners can agree to choose the alphabetically earliest).

Problem 1.1. Given p, b,N ∈ Z+, let D be a set of size N . Does there exist a collection
of p safe-set functions (hj : D → P(D))pj=1 such that:

1. Each hj can avoid any set of size b, that is, for every j ∈ {1, . . . , p} and B ⊆ S where
|B| = b, there exists a “safe” hj(s) such that hj(s) ∩B = ∅, and

2. For every P = (s1, . . . , sp) where sj ∈ S,
⋂p
j=1 hj(sj) 6= ∅?

If so, we call the ordered collection (hj)
p
j=1 a solution.

To simplify the problem, we can require the prisoners to adopt the same strategy. This
gives rise to the following special case:

Problem 1.2. Given positive integers p, b,N , let D be a set (the “dictionary”) of size N .
Does there exist a function h : D → P(D) such that:

1. Every ban list of size b can be avoided, that is, for every B ⊆ S where |B| = b, there
exists a “safe” h(w) such that h(w) ∩B = ∅, and

2. Any p safe sets intersect, that is, for every P = (s1, . . . , sp) where sj ∈ D,
⋂p
j=1 h(sj) 6=

∅?

We call such functions h anonymous solutions.

1.1 Connections to Other Areas of Mathematics

Although the most general form of the problem is a statement about finite sets, it may
be helpful to interpret the problem in terms of other areas of mathematics. For example,
when restricted to anonymous solutions, the problem can be represented in the language
of graph theory as follows:

Problem 1.3. Given p and b, find a directed graph X with the minimum possible number
of vertices, where loops are allowed, such that (i) for every b vertices {bi : 1 ≤ i ≤ b}, there
exists a vertex v such that v 6→ bi for each i, and (ii) for every p vertices {vi : 1 ≤ i ≤ p},
there exists a vertex u such that vi → u for each i.
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This does bear some similarity to the notion of n-existentially closed graphs, defined
in [3] as follows:

Definition 1.4 (Hai, Phuc, and Vinh). For a positive integer n, a graph (V,E) is existen-
tially closed if for every pair of disjoint subsets A,B ⊆ V with |A|+ |B| = n, there exists
a vertex z /∈ A ∪B adjacent to every vertex in A and no vertex in B.

The problem in this paper differs in several respects from the above definition, since
the graph X is directed, and the conditions on A and B are separated.

I did not find the graph construction useful, but most of my current solutions involve
the use of a group to form function h. To simplify the notation for this case I refer to one
of the output sets as itself a “solution”:

Definition 1.5. Given a group (G, ·), an anonymous solution for (p, b,G) is a subset
M ⊆ G such that the function h : G → P(G) given by h(x) = x ·M = {x ·m : m ∈ M}
satisfies b-dodging and p-intersection. (M need not be a subgroup, only a subset.)

Restricting the problem to groups does limit the potential solution sets somewhat (for
example, it excludes solutions where the outputs of h have different sizes), but all of my
current known solutions use groups, so I will present the sub-problem as follows:

Problem 1.6. Given p and b, find a group G with minimum order such that there exists
M ⊂ G where (i) for any {bi : i ≤ i ≤ b}, there exists g such that gM ∩ {bi} = ∅, and (ii)⋂p
i=1 giM 6= ∅ for any {gi : 1 ≤ i ≤ p} ⊆ G.

It will be helpful for analysis to define the two criteria for solutions separately. In the
general case:

Definition 1.7. A function h : S → P(S) dodges b, or satisfies b-dodging, if and only if
for any B ⊂ S, if |B| ≤ b, then h(s) ∩B = ∅ for some s ∈ S.

Definition 1.8. A function h : S → P(S) satisfies p-intersection if and only if for any
s1, . . . , sp ∈ S, h(s1) ∩ · · · ∩ h(sp) is nonempty.

The 2-intersection property has been discussed in the literature under the name “inter-
secting families”, e.g. [1]. However, usually the term “t-intersecting family” refers to the
minimum size of the intersection of two sets, |Si ∩ Sj | ≥ t, rather than the number of sets
which must intersect, Si1 ∩ · · · ∩ Sip 6= ∅, as in this problem. The “intersecting families”
literature also usually does not have |S| = N .

In the graph-theoretic context, G = (V,E) satisfies b-dodging if for every B there exists
a vertex u ∈ V such that u 6→ B, and it satisfies p-intersection if for every P ⊆ V , where
|P | = p, there exists a vertex v such that u→ v for every u ∈ P .

This allows us to restate the goal as follows:

Definition 1.9. An anonymous solution for (p, b,N) is a function h on a set of cardinality
N , such that h satisfies b-dodging and p-intersection. A graph X with N vertices, or a
subset M of a group G, with the associated properties can also be termed an anonymous
solution.
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2 Näıve Solutions

The accepted answer to the Puzzling Stack Exchange question works as follows: one pris-
oner finds a letter such that they are allowed to say the first 11 words beginning with
that letter; the other finds a number n such that they can say the nth word starting with
any letter. This strategy depends on there being 11 or more letters that have 11 or more
words, although the answerer noted that the prisoners see the dictionary in the planning
phase, so they could adapt the strategy for any dictionary by just using the nth word in
the dictionary to represent the number n, and using the digits of n− 1 in base 11 instead
of the word’s actual spelling.

In effect, the solution involves making an 11× 11 grid out of specific words; one player
chooses a “safe” row and the other chooses a “safe” column. In general, for b banned
words, two prisoners can win if N ≥ (b + 1)2. This strategy easily generalizes to an
arbitrary number of prisoners, making a p-dimensional grid of size b+1, with each prisoner
choosing a (p− 1)-dimensional safe slice and the testimony being the intersection. At this
point,

The solution can be made anonymous by letting each statement indicate both a safe
row and column that intersect at the statement word (or, for p > 2, the intersection
of one (p − 1)-dimensional slice in each direction). That is, S = {(s1, . . . , sp) : si ∈
{0, . . . , b} for all 1 ≤ i ≤ p}, and h(s) = {(x1, . . . , xp) : xi = si for some 1 ≤ i ≤ p}.

The puzzle’s author hinted that there was a second class of solutions for N ≥ (p+ 1)b

instead. One such solution involves constructing a b-dimensional grid of size (p + 1). If a
prisoner’s banned list is {wi : 1 ≤ i ≤ b}, then the prisoner can remove one slice in each
direction based on the ban list; for instance, let c = (w11, w22, . . . , wbb); then the message
set can be {(x1, . . . , xp) : xi 6= ci for all 1 ≤ i ≤ b}. This time, the “center” c might be
itself banned, but the prisoners can use (si), where si = (ci + 1) mod b, as the statement.

These two solutions are very similar. Switching p and b in the first anonymous solution
leads to a grid of the same size as the second, where the message sets of the two are
complements of each other. In fact, the criteria of intersection and dodging are complements
of one another, as Theorem 2.1 shows:

Theorem 2.1. Suppose that h : S → P(S) is an anonymous solution for (p, b,N). Then
(b, p,N) has an anonymous solution as well.

Proof. Let h∗ : S → P(S) be defined by h∗(s) = {s∗ ∈ S : s /∈ h(s∗)}. Then we must prove
that h∗ satisfies b-intersection and p-dodging.

For p-dodging, let W = {w1, . . . , wp} ⊂ S. Since h satisfies p-intersection, there is some
s so that s ∈ h(wi) for all 1 ≤ i ≤ p. Then, for any m ∈ h∗(s), s /∈ h(m), and for any
w ∈W , s ∈ h(w). Therefore, h∗(s) and the ban list W are disjoint. Since W was arbitrary,
h∗ satisfies p-dodging.

For b-intersection, the proof is similar: let A = {s1, . . . , sb} ⊂ S; it suffices to prove
intersection when s1, . . . , sb are distinct. Since h satisfies b-dodging, there exists m ∈ S
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such that h(m) ∩ A = ∅. Then for each i, si /∈ h(m), so si ∈ h∗(m) by definition of h∗.
Therefore, m ∈ h(s1) ∩ · · · ∩ h(sb). Since the si were arbitrary, h∗ satisfies b-intersection,
and since it also satisfies p-dodging, it must be a solution for (b, p,N).

In particular, when the solution is based on an Abelian group (G, ·) with identity e,
M∗ = {s∗ ∈ G : e /∈ s∗ ·M} is equal to the complement of M−1.

3 Improved Bounds

The above solution uses as N the smaller of (b + 1)p and (p + 1)b. A natural question is
whether or not a smaller N suffices.

For p = 1, the näıve solution gives N ≤ b+ 1 or N ≤ 2b. Clearly the former is better;
indeed, it must be optimal because if N ≤ b, there would be no acceptable words to use as
the prisoner’s statement.

3.1 p = 2 or b = 2

For p = 2, the näıve solution gives N ≤ (b + 1)2 = b2 + 2b + 1. For b = 10 this gives
N = 121, a number mentioned as minimal for the accepted answer strategy. However, I
have found a better solution that uses just over half of that N .

Theorem 3.1.
(

2, b, (b+1)(b+2)
N

)
and

(
p, 2, (p+1)(p+2)

N

)
have anonymous solutions.

Proof. We proceed in cases depending on whether b is even or odd.
If b = 2k, let G = (Z/(k+1)Z)× (Z/(2k+1)Z) and M = {(i, 0) : 0 ≤ i < k+1}∪{(0, i) :

1 ≤ i ≤ k}. If b = 2k − 1, let G = (Z/kZ) × (Z/(2k + 1)Z) and M = {(i, 0) : 0 ≤ i <
k} ∪ {(0, i) : 1 ≤ i ≤ k}. (See figure 1 below to visualize.)

It must be shown that these solutions satisfy 2-intersection and b-dodging. The former
is easy: given (x1, y1) and (x2, y2), let d1 = (x1 − x2) mod 2k + 1, and d2 = (x2 − x1)
mod 2k + 1. Clearly, d1 + d2 = 2k + 1, so one of them must be at most k. If it is d1 (the
d2 case is symmetric), then the point (x2, y1) will be in both cosets: it is in M1 because
(x2 − x1 mod 2k + 1) ≤ k, and it is in M2 because the first coordinate matches (x2, y2).

To prove b-dodging, consider first the case of b = 2k, and let B = {(xi, yi), 1 ≤ i ≤ 2k},
be the ban list. Let C be the set of empty columns, i.e. C = {x ∈ Z/(2k + 1)Z : x 6=
xi for all 1 ≤ i ≤ b}. Because there are b+ 1 total columns and at most b are removed, C
is nonempty.

I now show that there exists c ∈ C such that at most k bans appear in the next k
columns. Call such a column suitable. The proof is by induction on |C|. If C has one
element c, then since only one column is empty, b columns must be occupied, and since
there are only b bans, each column apart from c must contain exactly one ban. So there is
one ban in each of the k columns after c, for a total of k bans in that region. Therefore, c
is suitable.
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Suppose now that we can find a suitable empty column whenever |C| = n. If |C| = n+1,
where n ≥ 1 then there must be at least one column with two or more bans. Choose an
arbitrary such column x, relabel B so that b1 is in column x, and move b1 to the left, one
column at a time, until it reaches an empty column x′. Now, in the new ban list B′, there
are only n empty columns, and so for some column c, there are at most k elements of B′

in the next k columns after c. Now, B is obtained by moving b′1 from column x′ to x. If x
is among the next k columns after c, i.e. (x− c mod 2k+ 1) ≤ k, then x′ must have been
as well, since x′ is the nearest empty column left of x, and c remained empty, so (x′ − c
mod 2k + 1) < (x − c mod 2k + 1). Thus, b1 is not an additional ban in range of c, so c
is still suitable.

Because c is suitable, within the next k columns there are at most k bans. That region,
however, has k+ 1 rows, so at least one must be empty. Let r be one such row. Then (c, r)
(or, rather, its coset of M) dodges the b bans, because none of the latter are in the same
column (because column c is empty), and none of them intersect the rightward arm either
(as per above). Thus, the solution satisfies b-dodging.

If b = 2k−1, then the proof is similar except that now a suitable column needs to have
at most k−1 bans within k columns, because the grid only has k rows this time. However,
because the grid width is now b+ 2, there must be at least two empty columns. If |C| = 2,
then there is one ban in each non-empty column. Let c1, c2 be the empty columns. Either
(c2− c1 mod 2k+ 1) or (c1− c2 mod 2k+ 1) must be at most k, so one of the two empty
columns must be in range of the other. Suppose this is c2 in range of c1. Then of the
k columns right of c1, one is empty (c2), and the other k − 1 each have one ban. So, c1
is suitable. If |C| > 2, then a very similar induction proof shows that there still exists a
suitable column c1. In either case, there is still at least one more row than bans within
range of c, so (c, r) will again create a coset that dodges the b bans.

In both the even and odd cases, a solution has been constructed that satisfies 2-
intersection and b-dodging.

Figure 1 shows a graphical view of these solutions for b = 5 and b = 6 (represented
as green squares). I have not been able to find any solutions with smaller values of N .
Computer searches have ruled out the possibility of cyclic group solutions (2, b,Z/NZ) for
N < (b+ 1)(b+ 2)/2 when b ≤ 6. Note that since k + 1 and k are coprime to 2k + 1, the
groups used in the above solutions are actually cyclic.

3.2 p ≥ 3 and b ≥ 3

The fact that (1, b, b+1) and (2, b, (b+1)(b+2)
2 ) are solvable suggests that a solution may exist

for (3, b, (b+1)(b+2)(b+3)
3! ) = (3, b,

(
b+3
3

)
), and that more generally, (p, b,N) can be solved for

N =
(
b+p
p

)
=
(
b+p
b

)
. However, so far, I have not found a general solution for this value of
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Figure 1: Representations of the improved solutions for two values of b. The left two
images show the base sets and the right two images show it moved to dodge b banned tiles
(represented by red X’s).

N , though I did confirm via computer search that (3, b,
(
b+3
3

)
) have cyclic-group solutions

for b ≤ 6.

Conjecture 3.2. For all b ≥ 1 and p ≥ 1, there exists an anonymous solution for
(b, p,

(
b+p
p

)
).

However, there is another generalization of the pattern of p ≤ 2 that works for all values
of p and b. Recall the solutions for p = 2, which consisted of one column that was full, and
half of the remaining columns had one element of M each. In effect, those columns were
solutions to (1, k, k + 1) or (1, k − 1, k) stretched horizontally, and the coset was selected
so that only k or k − 1 bans would reside in that region.

For larger values of p we can proceed in a similar way. Take p = 3, b = 6. We can
use the same trick as before: our three-dimensional grid will have 7 layers. When p was
2, making less than half of the columns empty allowed for 2-intersection; here we need to
make less than one-third (in this case, 2) of the columns empty. Then there will be 1 full
layer, 4 partially filled planes, and 2 that are empty.

Therefore, we need the pattern in the partial layers to dodge 4 bans (two can always
be moved into empty layers). Also, it needs to satisfy 2-intersection: there will always be
a full layer that intersects both of the other two’s partial layers (as will be shown in the
proof), but the other two partial layers will still need to intersect.

But from Theorem 3.1, we have a solution for 2-intersection and 4-dodging. Each layer,
then, would be a 3× 5 grid (represented below as an equivalent row of 15). See Figure 2.
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Figure 2: Representation of a solution for p = 3, b = 6.

This method even generalizes to p = 4 and higher. While the above example has the
property that b ≡ 1 mod p, the method can be adapted to any b. Before stating the main
result, I first present the improved value of N . Let

N∗(p, b) =

p∏
i=1

(
1 + i ·

⌊
i+ b− 1

p

⌋)
For small values of p, b the function behaves as follows:

b
p 1 2 3 4 5 6 7

2 1 · 3 2 · 3 2 · 5 3 · 5 3 · 7 4 · 7 4 · 9
3 6 10 15 21 28 36

3 1 · 1 · 4 1 · 3 · 4 2 · 3 · 4 2 · 3 · 7 2 · 5 · 7 3 · 5 · 7 3 · 5 · 10
4 12 24 42 70 105 150

4 1 · 1 · 1 · 5 1 · 1 · 4 · 5 1 · 3 · 4 · 5 2 · 3 · 4 · 5 2 · 3 · 4 · 9 2 · 3 · 7 · 9 2 · 5 · 7 · 9
5 20 60 120 216 378 630

Also, note that when p = b, N∗(p, p) = p!. This is smaller than the original solution’s
N = (p+ 1)p but larger than the conjectured

(
2p
p

)
< 4p. In general, if p is constant and b

increases, N∗(p, b) ≈
∏p
i=1

ib
p = bp p!pp .

In the table, note that the products in each row contain copies of those in previous
rows; for example, N∗(4, 7) = 2 · 5 · 7 · 9, and N∗(3, 5) = 2 · 5 · 7. This is because, as the
following theorem shows, we can construct a solution for (4, 7) by using that of (3, 5):

Theorem 3.3. There exists an anonymous Abelian group solution for (p, b,N∗(p, b)), where
N∗ is defined above.

Proof. We proceed by induction on p. The case p = 1 is trivial: N∗(1, b) = 1 + (1 +
b − 1) = b + 1. The solution consists of giving as statement and testimony the one word
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that is not banned. Suppose now that for a specific p > 1, there exists a solution to
(p − 1, b,N∗(p − 1, b)) for all b ≥ 1. I will now prove (p, b,N∗(p − 1, b)) is solvable for
arbitrary b ≥ 1.

Let b = kp + r, where 1 ≤ r ≤ p (note that r = p is possible here). Then let
h = (k+1)p+1. The solution will use the group G = H×Z/hZ, where H will be specified
shortly. The set M ⊂ G will consist of one full layer, (k + 1)(p − 1) layers containing
a solution in H, and (k + 1) layers that are empty, arranged in that order. (Let “up”
correspond to the direction that moves from the full layer to the partial layers and then to
the empty ones.) The solution in H will satisfy (p−1)-intersection and (b−k−1)-dodging,
which must exist by the inductive hypothesis.

Now, with b bans there will be at least (h − b) = p + 1 − r ban-free layers. Apply
the down-slide algorithm to produce a new ban set B′, and let its ban-free layers be
e0 < e1 < · · · < ep−r. Now, (e1−e0)+(e2−e1)+· · ·+(e0−ep−r mod h) = h = (k+1)p+1.

Therefore, at least one of the terms on the left side must be greater than (k+1)p
p+1−r , which

is at least k + 1. So there must be some i such that (ei+1 − ei mod h) > k + 1. If we
now place the filled layer of our proposed solution at layer ei+1, then all of the other p− r
ban-free rows will appear in the partial rows, so that only (k + 1)(p − 1) − (p − r) =
kp+p−k−1−p+r = kp+r−k−1 = b−k−1 bans appear there. But since each of those
layers contains a copy of a (b − k − 1)-dodging pattern, there exists a translation of that
layer that dodges those bans. Since all other bans are in the empty rows of the pattern, it
follows that all b bans have been dodged.

Proving p-intersection is simpler. Given any p cosets, let f0 < f1 < · · · < fp−1 be the
indices of their full layers. Again, (f1 − f0) + (f2 − f1) + · · ·+ (f0 − fp−1 mod h) is a sum
of p terms adding to h = (k + 1)p + 1, and since r > 0, at least one of those differences
(fj+1− fj) must be strictly larger than k+ 1. Then layer fj+1 will contain at least one full
layer, and all of the other cosets will have either the full layer or a partial layer on fj+1.
These are p − 1 instances of a solution with (p − 1)-intersection, so they must intersect.
Thus, my solution satisfies p-intersection.

This recursive construction guarantees a solution using a group G for all (p, b). It
remains to show that |G| = N∗(p, b). By the inductive hypothesis, |H| = N∗(p− 1, b− k−

1) =
p−1∏
i=1

ui, where

ui =

(
1 + i ·

⌊
i+ b− k − 2

p− 1

⌋)
, 1 ≤ i ≤ p− 1

Also, N∗(p, b) =
p∏
i=1

vi, where

vi =

(
1 + i ·

⌊
i+ b− 1

p

⌋)
, 1 ≤ i ≤ p
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We know that |G| = h · N∗(p − 1, b − k − 1), so it suffices to show that ui = vi for
1 ≤ i ≤ p− 1, and that vp = h. The latter is simple:

vp = 1 + p

⌊
p+ b− 1

p

⌋
= 1 + p

⌊
p+ kp+ r − 1

p

⌋
= 1 + p(k + 1) +

⌊
r − 1

p

⌋
= h

because r − 1 < p. Now, if 1 ≤ i < p, then we must show that⌊
i+ b− k − 2

p− 1

⌋
=

⌊
i+ b− 1

p

⌋
Expanding the b in the numerators turns them into k(p− 1) + i+ r− 2 and kp+ i+ r− 1
respectively. Therefore we must show that

k +

⌊
i+ r − 2

p− 1

⌋
= k +

⌊
i+ r − 1

p

⌋
⌊
i+ r − 2

p− 1

⌋
=

⌊
i+ r − 1

p

⌋
Since i and r are strictly less than p, both quantities must be 0 or 1. Furthermore,
i+ r− 2 < p− 1 if and only if i+ r− 1 < p, so the floored fractions must either both be 0
or both be 1. In either case they are equal.

Therefore, |G| = h · |H| = h ·N∗(p− 1)(b− k − 1) = N∗(p, b). Since b and p > 1 were
arbitrary, we conclude by induction on p that there exists a (p, b,N∗(p, b)) solution for all
p and b.

4 Lower Bounds

My current research has focused almost entirely on upper bounds for N . Lower bounds
seem to be more difficult, but I was able to prove a lower bound on p = 2. We start with
some simple cases:

Theorem 4.1. There is no solution, anonymous or not, for (2, 2, 5).

Proof. Suppose a solution (h1, h2) exists. Consider prisoner 1’s function h1 where h1(i) ⊆
{1, 2, 3, 4, 5} for all i ∈ {1, 2, 3, 4, 5}. Since h1 satisfies 2-dodging, |h1(i)| ≤ 3 for all i;
however, to satisfy 2-intersection we must have |h1(i)| ≥ 3 for all i (if |h1(i)| ≤ 2 for some
i, then B2 may cover h1(i), but for some j, h2(j) ∩ B2 = h2(j) ∩ h1(i) = ∅, contradicting
2-intersection). However, there are 10 possible ban lists B1, each of which allows only one
safe set, {1, 2, 3, 4, 5} \B1. Since the range of h1 contains only 5 elements, it is impossible
for h1 to satisfy 2-dodging. This is a contradiction, so no such h1 and hence no such
solution (h1, h2) exists.

Theorem 4.2. There is no solution, anonymous or not, for (2, 3, 8).
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Proof. As before, assume to the contrary that a solution (h1, h2) exists. Because b = 3 we
must have 4 ≤ |h1(i)| ≤ 5. There are

(
8
3

)
= 56 ways to choose B1. Each B1 allows 5 safe

sets of size four, and 1 of size five. (Actually, the set of size five contains the sets of size
four, and thus it does not give an extra option.) We would need at least 56/5 > 11 safe
sets, but there are 8 elements in the range of h1, so we once again have a contradiction.

The general rule for p = 2 is that (2, b,N) is guaranteed to be unsolvable if(
N

b

)
> N

(
N − b
b+ 1

)
This can be simplified to

(N − 1)!

(N − b)!
(b+ 1) >

(N − b)!
(N − 2b− 1)!

(1)

which can be proven exactly analogously to Theorem 4.2. This requires that N > 2b,
but if N ≤ 2b then the problem is trivially unsolvable because the ban sets can cover the
dictionary. We can use (1) to prove an asymptotic lower bound for p = 2:

Theorem 4.3. For every c > 0 and ε > 0, if N ≤ cb2−ε, then for sufficiently large b, there
is no solution for (2, b,N).

Proof. Using an error bound of Stirling’s approximation due to Robbins [4], that n! =√
2πn(n/e)nern , where 1

12n+1 < rn <
1

12n , we can write the following equation, which will
imply (1):√

(N − 1)
(
N−1
e

)N−1
e

1
12N−12+1√

(N − b)
(
N−b
e

)N−b
e

1
12N−12b

(b+ 1) >

√
(N − b)

(
N−b
e

)N−b
e

1
12N−12b√

(N − 2b− 1)
(
N−2b−1

e

)N−2b−1
e

1
12N−24b−12+1

Taking logarithms of both sides and rearranging slightly, we get

ln(b+ 1) + 1
2 ln

(
N−1
N−b

)
+ (N − 1) ln(N − 1) + 1

12N−11 − 2(N − b) ln(N − b)− 2
12N−12b

> 1
2 ln

(
N−b

N−2b−1

)
+ (N − 2b− 1) ln(N − 2b− 1) + 1

12N−24b−11 − 2

where the final −2 term comes from the eN−1, eN−b, eN−b, and eN−2b−1 factors.
This can be further simplified to(

N − b+
1

2

)
ln

(
1− b2 + 2N − 2b− 1

N2 − 2bN + b2

)
+ b ln

(
1 +

2b

N − 2b− 1

)
− ln

(
(N − 1) (N − 2b− 1)

b+ 1

)
+ 2 +

264N + 288b2 − 264b− 242

123 (N − b)
(
N − 11

12

) (
N − 2b− 11

12

) > 0

(2)
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Now, suppose that N = cb2−ε. Then the above expression becomes (note that the first
term is negative)(

cb2−ε − b+
1

2

)
ln

(
1− b2 + 2cb2−ε − 2b− 1

c2b4−2ε − 2cb3−ε + b2

)
+ b ln

(
1 +

2b

cb2−ε − 2b− 1

)
− ln

(
(2cb2−ε − 1)(2cb2−ε − 2b− 1)

b+ 1

)
+ 2 +

264N + 288b2 − 264b− 242

123 (N − b)
(
N − 11

12

) (
N − 2b− 11

12

)
> cb2−ε ln

(
1− b2 + 2cb2−ε

c2b4−2ε − 2cb3−ε

)
+ b ln

(
1 +

2

cb1−ε

)
− ln

(
c2b3−2ε

)
= cb2−ε

(
− bε + 2c

c2b2−ε − 2cb
− (same)2

2(1− ξ1)2

)
+ b

(
2(cb1−ε)−1 − 2(cb1−ε)−2

2(1 + ξ2)2

)
− ln(c2b3−2ε)

where 0 < ξ1 <
bε+2c

c2b2−ε−2cb and 0 < ξ2 <
2

cb1−ε by Taylor’s Theorem. As b → ∞, the only

terms that matter are the first term, which is asymptotically − bε

c , and the second, which

is asymptotically 2bε

c . For sufficiently large b, this will behave like bε

c and thus be positive,
so for such b, there is no (2, b,N) solution.

Technically, the above only works when N is equal to cb2−ε. However, if there is no
solution for (2, b,N) then there cannot be a solution for (2, b,N ′) where N ′ < N , since a
solution for (2, b,N ′) can be trivially extended to (2, b,N) by assigning duplicate sets (say,
h(s1)) to h(sj) where j > N ′.

Therefore, the given b is unsolvable for all N ≤ cb2−ε.

Figure 4 shows the largest b such that (1) does not hold when N is a power of 2, and
hence these b values are upper bounds on b for these N :

N 8 16 32 64 128 256 512 1024 2048 4096 213 214 215 216

b 2 5 9 15 24 39 60 92 139 208 310 458 675 992

Figure 3: Smallest b such that (2, b,N) is guaranteed to have no solution.

Going the other way, we can create the following sequence:

b 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

N 2 5 8 11 14 18 22 26 31 35 40 45 50 56 61

Figure 4: Largest N such that (2, b,N) is guaranteed to have no solution.

Some admittedly crude numerical experiments appear to suggest an asymptotic ap-
proximation N ≈ b2

2 ln(b) for the threshold (the ratio of the two sides would approach 1 as

b→∞).
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5 Discussion

The fact that N∗(p, b) 6= N∗(b, p) for many pairs (p, b) suggests that, like the naive (b+ 1)p

solutions, the N∗ solutions are not optimal. Indeed, through various computer searches
I have found solutions for (3, 3,Z/20Z), (3, 4,Z/35Z), (3, 5,Z/56Z), (3, 6,Z/84Z), and
(4, 4,Z/70Z) (they are presented in Appendix A). However, attempts to generalize the
binomial pattern even to (3, 6k,

(
6k+3
3

)
) have failed. The ideas I have been trying are based

on the following:

• A grid of size (2k+ 1)× (3k+ 1)× (6k+ 1) gives the right value of N , with a height
of b+ 1.

• This means we can use one full layer, like in the N∗ solution, and have 4k partial
layers.

• So far, my ideas have all used three blocks of 2k layers each: a “heavy” block adjacent
to the filled layer and a “light” block adjacent to an empty block and the heavy block.

• For this to satisfy 6k-dodging, at the very least, the light and heavy layers need to
be able to co-dodge 2k bans each (“co-dodge” meaning that given 2k bans in each
block, there is a single translation that allows both blocks to dodge their 2k bans
simultaneously).

• Additionally, the light block must be able to dodge 4k−1 bans. (Originally, I believed
the required number was 4k, but if 4k bans are in the light block, the other 2k must
be in the empty block. It may be possible to move the whole pattern 2k layers up
and put the 4k bans in the heavy section. This seems to make the problem worse,
but if the light and heavy patterns are constructed so that efficiently blocking the
light pattern leaves gaps for the heavy pattern, this may work. In fact, it does work
for (3, 6, 84).)

• Finally, to satisfy 3-intersection, the heavy pattern must be guaranteed to intersect
itself and also the light pattern.

In fact, even the binomial coefficients are not always optimal. There is, for instance, a
solution for (3, 3,Z/19Z), which is unique for that group up to rotation, reflection, and com-
plement (this was found by simple brute force search). Solutions also exist for (3, 4,Z/34Z)
(there appear to be between 8 and 16 distinct solutions when rotations and reflections are
ignored). One example of each appears in Appendix A.

Also, the induction step of Theorem 3.3 only requires the existence of an Abelian group
solution for (p− 1, b− k − 1); the construction of the (p, b) solution is independent of the
smaller solution. Hence it is, for instance, possible to solve (5, 5, 420) by applying the
construction to the (4, 4, 70) solution shown in Appendix A.6, even though N∗(5, 5) = 720.
The results of applying this method to all 1 ≤ p, b ≤ 7 are given in Appendix B.
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As for the lower bounds, no obvious sequence derived from Figure 4 (“obvious” meaning
the sequence of b, b + 1, or the inverse sequence of N values needed to reach a certain b)
appear to be in the OEIS as of June 3, 2022. (Searching the OEIS for sequences derived
from Table B is likely useless because the values themselves are conjectural.)

A natural extension would be to extend the lower bound to any number of prisoners:

Conjecture 5.1. For any c > 0 and ε > 0, there exists N0 such that for any N > N0, if
b > cN1/p+ε or p > cN1/b+ε, there is no solution, anonymous or not, for (b, p,N).

A Specific Results

Here are some specific solutions I have found in small cyclic groups. The set M is repre-
sented by 1’s, so the string “110100” represents the set {0, 1, 3} ⊂ Z/6Z. For the first four
groups I have exhaustively checked all 2|G| possible patterns (although in the case of (3, 4)
I did limit my search space to between 12 and 17 elements in M). For the others I used a
more restrictive search space. I have not searched non-cyclic groups because cyclic groups
can be represented using bit vectors for great efficiency.

The “up to rotation” figures do not account for reflection or (when p = b) complement.
They also do not account for the possibility of automorphisms of the group, because it may
be possible for two distinct transformations to return the same output for a given input
(indeed, that must be the case for the (3, 3,Z/19Z) solution and its mirror image).

A.1 (3, 3,Z/19Z)

76 solutions, 4 solutions up to rotation. One example: 0000101011110010011
(This solution is unique up to reflection and complement, at least among group solu-

tions.)

A.2 (3, 3,Z/20Z)

6400 solutions; 320 solutions up to rotation. One example: 00010010100110011111
As a 5× 4 grid:

01110

00100

01010

11011

A.3 (3, 4,Z/34Z)

544 solutions, 16 up to rotation. One example: 0000001011110100100111001101000001
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A.4 (3, 4,Z/35Z)

157920 solutions, presumably 4512 up to rotation. One example:
00001001010101100011010010001100111

As a 7× 5 grid:

0000000

1000100

1000100

1000111

1111111

A.5 (3, 5,Z/56Z)

I stopped looking after finding 3 solutions. One example:
00010111001001010000100100010001001000110000011100001111

The example is based on this grid pattern (the other two were based on automorphisms
of the layers):

1111111

0001111

0001111

0001001

0001001

0001001

0000000

0000000

There may be solutions in (Z/7Z)× (Z/4Z)× (Z/2Z) but that group is not cyclic.

A.6 (4, 4,Z/70Z)

I have found only one solution.
0011100001001110001101011011010100101111010110001100101000010011100111

My search pattern was extremely restrictive; I searched for subsets H,M,L ⊂ Z/14Z
such that any translations of the three, as well as translations of their complements, are
guaranteed to intersect. The answer as a grid looked like this:

11111111111111

01011011011011

00100010011111

00010001100011

00000000000000
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There may have been an error in my search pattern because automorphisms of the
layers were not printed. For instance, the second layer can be changed into 00000111111111
with an affine transformation (if 0 is on the left, n → 5n + 4 works). Alternatively, my
assumption that shifting individual layers preserves solutions may have been incorrect.

B Table of Best Known N for 1 ≤ p, b ≤ 7

This table has been obtained by taking the known solutions from Appendix A for p ≤
3, b ≤ 3, and (p, b) = (4, 4), using the recursive formula to fill the upper triangle, and then
using Theorem 2.1 to fill p > b.

b = 1 b = 2 b = 3 b = 4 b = 5 b = 6 b = 7

p = 1 2 3 4 5 6 7 8
p = 2 3 6 10 15 21 28 36
p = 3 4 10 19 34 56 84 150
p = 4 5 15 34 70 171 306 504
p = 5 6 21 56 171 420 770 1881
p = 6 7 28 84 306 770 2940 5460
p = 7 8 36 150 504 1881 5460 23520

Figure 5: My best known values of N for 1 ≤ p, b ≤ 7. The pattern of N ≤
(
b+3
3

)
when

p = 3 is not known to persist beyond b = 6.
(
3+7
3

)
= 120, which is less than the entry 150

at (3, 7) and (7, 3).
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